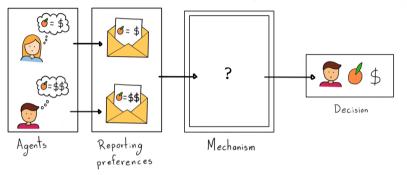
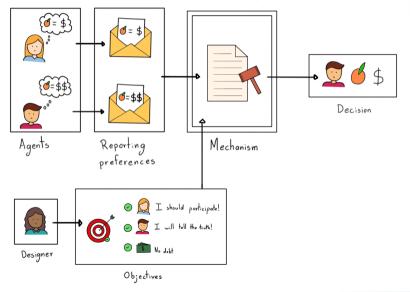
Automated Synthesis of Mechanisms

Munyque Mittelmann¹ Bastien Maubert² Aniello Murano² Laurent Perrussel¹


¹IRIT - University of Toulouse Capitole

²University of Naples "Federico II"


munyque.mittelmann@irit.fr

VardiFest 2022

Automated Mechanism Design

Automated Mechanism Design

Automated Mechanism Design

- Automated Mechanism Design (AMD) (Sandholm 2003):
- Mechanism Design as a synthesis of Quantitative Strategy Logic (SL[\mathcal{F}]) formulas
- Specifications may involve requirements on the strategic behavior and the quality of the outcome

Quantitative Strategy Logic $\mathsf{SL}[\mathcal{F}]$

- Weighted Concurrent Game Structure (wCGS) ${\cal G}$
- Syntax:

 $\varphi ::= p \mid \exists s. \varphi \mid (a, s_a)\varphi \mid f(\varphi, \dots, \varphi) \mid \mathbf{X}\varphi \mid \varphi \mathbf{U}\varphi$

where f is a function in \mathcal{F} , p is a proposition, s_a is a variable, a is an agent

• Case where atomic propositions only take values in $\{-1, 1\}$ and \mathcal{F} consists of $x \mapsto -x$ and $x, y \mapsto \max(x, y)$: SL

Solution concepts

• Nash equilibrium (NE)

$$\mathsf{NE}(s) := \bigwedge_{a \in \mathsf{Ag}} \forall t. \left[(\mathsf{Ag}_{-a}, s_{-a})(a, t) \mathbf{F}(\mathsf{util}_a) \\ \leq (\mathsf{Ag}, s) \mathbf{F}(\mathsf{util}_a) \right]$$

4/8

Japanese auction

- $AG((\neg sold \land price + inc \le 1) \rightarrow (price + inc = Xprice \land \neg Xterminal))$
- $AG((sold \lor price + inc > 1) \rightarrow (price = Xprice \land Xterminal))$
- $\mathbf{AG}(\mathsf{choice} = \mathsf{wins}_a \leftrightarrow \mathsf{bid}_a \land \bigwedge_{b \neq a} \neg \mathsf{bid}_a)$
- $\mathbf{AG}(\bigwedge_{a \in \mathsf{Ag}}(\mathsf{choice} = \mathsf{wins}_a \to \mathsf{payment}_a = \mathsf{price}))$

Synthesis of mechanisms with $\mathsf{SL}[\mathcal{F}]$

Given a finite set V ⊂ [-1,1] such that {-1,1} ⊆ V, the V-satisfiability problem for SL[F] is the restriction of the satisfiability problem to V-weighted wCGS.

Theorem (Satisfiability of $\mathsf{SL}[\mathcal{F}]$)

The satisfiability of $SL[\mathcal{F}]$ is decidable in the following cases

- $\circ~{\rm wCGS}$ with bounded actions
- $\circ~$ Turn-based ${\rm wCGS}$
- Algorithms for the satisfiability problem of SL[\mathcal{F}]-> return a satisfying wCGS when one exists.

Optimal mechanism synthesis

Algorithm 1: Optimal mechanism synthesis

Data: A SL[\mathcal{F}] specification Φ and a set of possible values for atomic propositions \mathcal{V} **Result:** A wCGS \mathcal{G} such that $\llbracket \Phi \rrbracket^{\mathcal{G}}$ is maximal Compute Val_{ϕ, v}; Let ν_1, \ldots, ν_n be a decreasing enumeration of Val_{Φ} ν : for *i*=1...n do Solve \mathcal{V} - satisfiability for Φ and $\vartheta = \nu_i$; if there exists \mathcal{G} such that $\llbracket \Phi \rrbracket^{\mathcal{G}} > \nu_i$ then return *G*: end

end

Conclusion

- Logic-Based Mechanism Design
- Generating mechanisms \rightarrow synthesis from SL[$\mathcal{F}]\text{-}\text{formulas}$
- Fragments of $SL[\mathcal{F}]$
- Probabilistic setting
 - Bayesian mechanisms
 - Mixed strategies
 - Randomized mechanisms

Thanks!

Contact: munyque.mittelmann@irit.fr

Automated Synthesis of Mechanisms

Munyque Mittelmann¹ Bastien Maubert² Aniello Murano² Laurent Perrussel¹

¹IRIT - University of Toulouse Capitole

²University of Naples "Federico II"

munyque.mittelmann@irit.fr

VardiFest 2022